
1. THE PHYSICAL DESIGN OF THE INTERNET (8/21/95) 1

An Introduction to the Internet Networking
Environment and SIMNET/DIS

by John Locke
(Internet: jxxl@cs.nps.navy.mil)

Computer Science Department, Naval Postgraduate School

1. THE PHYSICAL DESIGN OF THE INTERNET

The Internet is the world’s largest data network. It was originally developed by Bolt Beranek and
Newman, Inc. (BBN) in the late seventies under the auspices of the Defense Advanced Research
Projects Agency (DARPA). The basic operation of the network ispacket-switching--the sending
host divides a block of data into packets, transmits each packet individually and the receiving host
reassembles them. In between, the packets share the same network bandwidth with packets from
other hosts. Note how this differs from acircuit-switched network like the phone system. During a
phone call, caller and receiver share exclusive use of a range of the network bandwidth. So there
is no overlap between the phone system and the Internet, the cabling is separate, the operation is
different. However, the two systems do interface where Internet-connected systems have modems
and provide services, like electronic mail transfer, to non-Internet hosts.

The Internet was so named because it drew together a number of separate networks into a single
cohesive system. Among others, these included the MILNET, the NSFNET, and the original test
bed, the ARPANET. Because of the Internet’s distributed design, new networks can be added to
the system with minimal effort. NPS, for example, is part of the Bay Area Research Network
(BARRNET), which primarily services the San Francisco Bay Area, but extends as far south as
Monterey and to Davis, California to the northeast. Within these networks are locally adminis-
tered entities like NPS. In turn, we are subdivided into local-area networks (LANs) connected to a
campus backbone network. Individual networks, large and small, are connected by gateways, of-
ten special-purpose hardware calledrouters, whose purpose is to transfer packets from one net-
work to another, if it gets them closer to their destination.

The following figure illustrates the relationship between networks and gateways in the Computer
Science Department. Note that because of the uniform design of the Internet, any part of it is a mi-
crocosm of the whole. The horizontal lines represent Ethernet cables, a common, but not required,
LAN medium. To attach to an Ethernet, a host must have an Ethernet interface (card) and a short
piece of cable that can tap into the Ethernet through atransceiver. Each interface has a 48-bit id
number burned into its ROM by the manufacturer that is guaranteed to be unique, thus hosts can
always be uniquely identified on a LAN. Hosts are uniquely identifiedwithin the Internet by a 32-
bit number assigned by local system administrators, thus facilitating communication between any
two hosts on the Internet. All NPS hosts are numbered within the 131.120.xxx.xxx block (dotted
notation is standard).1 In the figure, gateways have two Ethernet interfaces, each attached to a dif-

1. The Internet faces an impending shortage of numbers. Why? For example, NPS’s address space is large enough for 2^16 hosts--most will go un-
used.

2. THE INTERNET PROTOCOL STACK (TCP/IP) (8/21/95) 2

ferent network. Currently in the department, ordinary Sun servers with routing software act as
gateways. The host markedrouter is a dedicated Cisco gateway with an Ethernet on its campus
backbone side.

CS Department Gateways and Networks

Ethernet hardware consists of a coaxial cable that provides a single communication channel and
transceivers that send and sense signals. When a packet is put out on the cable, every host reads
the data through its transceiver. The Ethernet card examines the destination address of the packet.
If it is for that host, the packet is passed to the operating system, otherwise it is discarded. When
two packets are put on the cable at once, so that their signals corrupt each other, the transceiver
detects acollision. Both hosts wait a random interval and retransmit the packet. The maximum
data rate Ethernet can handle is 10 Mbps. Practically speaking, optimal performance is at about
60% of that since at higher saturations the collision rate becomes too high to increase throughput.

2. THE INTERNET PROTOCOL STACK (TCP/IP)

A protocol can be defined as the format of the data that hosts impart to one another and the order
that it is imparted in--how communication is initiated, how it proceeds, how it is terminated. As
there are higher-to-lower levels of programming languages, higher levels satisfying broad con-
cepts and lower levels accounting for hardware specifics, so there are higher-to-lower levels of
protocols, with higher levels defined by user applications like file transfer and electronic mail, and

aquariusgemini grus db8 ai

router

router

NPS backbone net

CS Department main net

AC Lab SE Lab DB Lab Graphics Lab

BARRNET

gateway

network

2. THE INTERNET PROTOCOL STACK (TCP/IP) (8/21/95) 3

lower levels managing network hardware. As higher level languages simplify application pro-
gramming, so do higher levels protocols simplify network programming.

In the Internet environment, we’re concerned with a set of protocol layers commonly called TCP/
IP. The following figure illustrates the conceptual layering:

The Internet Protocol Stack and Network Layering

Going from bottom to top, here is a brief explanation of the layers:

• Network - the cable itself, and associated hardware.

• Network Interface - the Ethernet card, or some other host network device.

• Device Driver - the software component that handles direct operations on the Network Inter-
face; in a UNIX system the driver is part of the kernel.

• Internet Protocol (IP) - manages the delivery and receipt of individual IP packets.

• User Datagram Protocol (UDP) - unreliable (not guaranteed) packet delivery between host pro-
cesses; maximum message size is one IP datagram; often used forbroadcasting, communica-
tion from one host to every other host on a LAN.

• Transmission Control Protocol (TCP) - reliable stream delivery of data with flow control for
optimizing the use of available bandwidth; TCP breaks large blocks of data into sequenced da-
tagrams, keeps track of acknowledged receipts, and retransmits lost or corrupted packets.

• Multicast (MC) - communication from one host to a subset of the hosts on a network; not yet
an official standard, although it has been implemented in SGI’s IRIX and Sun’s Solaris operat-
ing systems.

• TELNET, FTP, etc. - application protocols that provide useful functionality to the network; the
implementation of network services.

MC SIMNET

DISTELNET FTP

TCP UDP

IP

Device Driver (link layer)

Network Interface

Network

3. HOST NAMES AND THE DOMAIN NAME SYSTEM (DNS) (8/21/95) 4

• SIMNET, DIS - simulation protocols; to be discussed in later sections.

3. HOST NAMES AND THE DOMAIN NAME SYSTEM (DNS)

The key identifier of hosts on the Internet is the IP address, e.g. 131.120.1.13. But since numerical
identifiers are difficult to remember, hosts are given symbolic names. The name for 131.120.1.13,
for example, is “taurus.cs.nps.navy.mil”. That long name completely locates host taurus within
theDomain Name System, a distributed database application that, primarily, provides host name
to IP address translation. Do not be misled by the dotted notation, though. The DNS provides a
logical grouping of names; there is no physical location implied or routing data provided by DNS.
At NPS, our host names and physical subnets do correspond, providing a parallel between the
naming and numbering systems, but that is only because our facility is not geographically dis-
persed. If we had offices in another part of the country, our host names could continue to have log-
ical consistency even though the hosts are physically distant on the network.

There is a lot of confusion about what DNS does and doesn’t do. When you use a host name with
a command, like “ftp taurus.cs.nps.navy.mil”, before doing anything else the command queries
the DNS and receives, if successful, an IP address for the host. All interaction with the host is
done on the basis of the IP address. If the command returns the message “Host unknown” the
address resolution has failed; any other problems with connecting to the host are likely not the
fault of DNS. For example, the address can be resolved, but if the host is down no connection can
be made. The sure test to find out whether DNS is failing is to use the command with an IP
address, like “ftp 131.120.1.13”. If it connects where using the name did not, then DNS is the cul-
prit.

4. INTERPROCESS COMMUNICATION (IPC)

It is too broad to think of hosts talking to each other; as a practical matter, the machines have
nothing interesting to say. The substantive communication goes on betweenprocesses. A process,
of course, is a program that is running, a useful distinction on a multi-processing machine. A pro-
cess can communicate with another process on the same host, or with a process on another host, in
which case a network links the two.

Various modes of interprocess communication--pipes, for instance--have long been part of UNIX.
TCP/IP functionality was first added to UNIX at UC-Berkeley and is now a standard inclusion in
UNIX-based workstations. TCP/IP is not a program proper, but a collection of code compiled into
the kernel. Like any system resource, programmers access TCP/IP through the use of either sys-
tem calls or library routines (which invoke system calls).

Basic networking programming is surprisingly easy in a UNIX environment. To open a channel of
communication, the programmer must specify whether the processes to communicate will be on
the same or different hosts and, if on different hosts, whether TCP or UDP is preferred. The result
of this initialization is to open asocket, defined as a special case of a file descriptor2, an end-point
of communication. Once obtained, data is transmitted simply by using the system calls for writing
and reading, as if the socket were an ordinary data file. From that point, the programmer’s task is

5. SIMNET (8/21/95) 5

to implement some higher-level protocol, i.e. I connect to you, I offer you data and wait for your
reply, you accept the offer and wait for the data, I send the data, you acknowledge successful
transmission, I terminate the connection.

Note that on a multi-processing machine, the hardware or IP host address is insufficient for chan-
neling data to its final destination. Therefore, we use the concept ofport numbers to identify com-
municating processes. (It should not be confused with hardware ports that are used in low-level
programming.) Port numbers from 0 to 1023 are reserved for well-known services3, e.g. TELNET
connections are always made on Port 23. Along with the protocol definition, this allows anyone to
implement network applications for common services. Port numbers from 1024 and above are
available for user applications, and must be agreed upon by programmers designing separate ap-
plications around a common protocol.

5. SIMNET

5.1. General Description

SIMNET is a standard for distributed interactive simulations developed under DARPA auspices
beginning in 1985; functional systems were running within three years. A few words on terminol-
ogy: A computer simulation could model any real-world activity; SIMNET, not surprisingly, is
oriented toward entities on a battlefield (tanks, planes, projectiles, etc.).Distributed means that
processing of the simulation can take place on different hosts on a network.Interactive means that
the simulation can be dynamic (as opposed to scripted), guided by human operators. A simple but
representative simulation might be two graphics workstations, both displaying a single battlefield
from different points of view, both allowing human operators to guide their own tanks. SIMNET,
of course, is more ambitious--a realistic simulation would include thousands of entities; control-
ling input for the entities could come from human operators, the computer itself, or even actual
entities transmitting their locations as they move.

The purpose of SIMNET is to facilitate early phases of training at a cost far below the expense of
operating real vehicles or conducting real battlefield exercises. The range of SIMNET applica-
tions goes from training tank drivers with a console that models the interior, controls, and external
views provided in a real tank to tactical planning sessions for battlefield commanders. The role of
the Computer Science Department is to use a standardized simulation environment as a test bed
for study in areas such as graphics and artificial intelligence so that our research might ultimately
serve the practical needs of the Department of Defense.

2. UNIX treats all devices or accessible hardware as files to allow uniformity in programming. Device drivers imple-
ment the specifics of opening, reading, writing, and performing other basic operations on the “file.”

3. Protocol standards, including port numbers, are defined by Requests for Comments (RFCs), the official Internet
design documents.

5. SIMNET (8/21/95) 6

5.2. SIMNET Protocol Data Units (PDUs)

Having said all that, we can now refer to SIMNET as a network protocol, knowing that it is much
more. As a practical matter, the data shared among hosts in a SIMNET simulation is defined by
the protocol standard. A host can only know what it is told. If a vehicle controlled by one host
moves or shoots, that information must be transmitted on the network so that all the other hosts
can keep their displays, or at least their state, current. The SIMNET standard defines Protocol
Data Units (PDUs), each of which is the format of the data in the packet describing a type of
event. Following is a list of all the SIMNET PDUs [POPE]:

PDU Purpose
Activate Request - Introduce a vehicle to the simulation
Activate Response - Accept or reject Activate Request
Deactivate Request - Withdraw a vehicle from the simulation
Deactivate Response - Accept Deactivate Request
Vehicle Appearance - Update vehicle state, i.e. location, appearance, operational status
Radiate - Report use of radar
Fire - Report firing of projectile
Impact - Report impact of projectile
Indirect Fire - Report impact of indirect fire from projectile
Collision - Report of collision by moving vehicle
Service Request - Request transfer of munitions, fuel or ammo, from supplier
Resupply Offer - Transfer munitions to requesting entity
Resupply Received - Acknowledge receipt of some or all of offered munitions
Resupply Cancel - Abort transfer of munitions
Repair Request - Request repair
Repair Response - Report completion of repair
Minefield - Describe emplaced minefield
Breached Lane - Describe path cleared through minefield
Marker - Announce marking of minefield with flags

Within each PDU are a number of fields which take actual or coded values. Actual values consist
of location coordinates, entity speed, or somesuch; coded values consist of booleans or defined
constants to describe state conditions.

A simulation that thoroughly implemented all of the PDUs and all of the implied entity states
would be very complicated (as well as creating an obvious performance bottleneck on current
processors). A practical simulation implements a relevant subset of the PDUs. A simple simula-
tion could be built around just the Vehicle Appearance PDU (activation would be implied by the
first PDU for a vehicle).

5. SIMNET (8/21/95) 7

5.3. Initial State of the Simulation

The above PDUs allow the developing events of a simulation to be shared among hosts. However,
they do not describe the initial state of the simulation. This must simply be agreed upon by simu-
lation participants beforehand. The most important part of the initial state is the terrain. This is a
database of elevation measurements for the grid points of some real-world area. There tends to be
a few of these databases that people use such as Ft. Hunter-Liggett, the National Training Center,
Germany’s Fulda Gap, or Northwestern Iraq.

The dead reckoning algorithm is another factor that must be known up front. It should be readily
apparent that constantly updating a moving vehicle’s position would consume a lot of network
bandwidth. The solution is for hosts todead reckon the position of vehicles controlled by other
hosts, that is, to take the vehicle’s speed and direction and calculate its likely position. The con-
trolling host’s responsibility, then, is to put out a Vehicle Appearance PDU when the vehicle’s
speed or direction changes. Because of the vagaries of terrain and atmosphere, dead reckoning is
only accurate to some degree. Hosts must therefore dead reckon their own vehicles and put out a
Vehicle Appearance PDU when the dead reckoned position diverges too much from the actual
position. The reason for initial agreement is that there are a number of dead reckoning algorithms,
from simple to complicated, each reflecting some trade off between accuracy and computational
load. But all hosts in a simulation must be using the same algorithm.

Other items to agree upon are the specific vehicles participating in the simulation and the way
they are identified. Since a practical simulator implements a subset of the standard capabilities,
then obviously participating hosts with different software must closely accord on capabilities in
use. (Note that there is wide latitude, not specified by SIMNET, in the potential operation or qual-
ity of a simulation. Many issues are left in the hands of implementors. Graphical simulation dis-
play is dependent on hardware quality and the degree of realism desired, or afforded by CPU
throughput. Methods of automating vehicles, whether through human or software guidance, is
similarly open.)

5.4. Tools

SIMNET does not require the use of specific network hardware or lower-level protocols, although
it does define certain performance attributes such as minimum throughput and reliability. Because
Ethernet is so commonplace, SIMNET recommends an implementation. It uses the 48-bit Ether-
net destination address as a multicast address, with certain bit fields identifying the multicast
group and the simulation exercise. Unfortunately, this technique prevents the use of TCP/IP, but
then TCP/IP currently has no multicast facility. The problem for us was to find some way of
bypassing TCP/IP, manipulating the hardware destination address, and reading and writing pack-
ets to the Ethernet. Ultimately, different solutions were found for SGI and Sun systems owing to
different facilities which happened to be in their respective UNIX implementations [LOCKE
Mar92].

SGI implements IP Multicast, but that uses a special block of the 32-bit IP host addresses and is
therefore incompatible with SIMNET’s recommendations for Ethernet. However, another SGI
enhancement,snoop(7p), a network monitoring protocol, provides promiscuous packet capture,
treating packets as datagrams containing a link-layer header followed by data. Since the header

6. DISTRIBUTED INTERACTIVE SIMULATION (DIS) (8/21/95) 8

encompasses the destination Ethernet address, the SIMNET-specified multicasting address can be
examined or set by the user program, thus providing read and write capability. SGI also provides
shared memory between processes through the use of anarena. Combining the snoop protocol
with the shared memory capability suggested an architecture for a SIMNET network library. A
daemon process monitors the network for SIMNET packets and maintains incoming packets on a
queue in the arena. Client applications read PDUs on the queue and add outgoing PDUs. Client
implementors do not need to understand the underlying scheme because a client library does all
the work. The implementor simply manipulates the queue with calls likenet_read() and
net_write(), passing a PDU structure. The software works reliably but is hindered by the overhead
of using an arena. Additionally, the daemon had to run with root access to read the network at the
link layer; because of the limitations of the shared memory implementation, clients had to run as
root to access the arena.

The Sun implementation was completely different (although it provides an identical interface).
Sun provides a driver called a Network Interface Tap (NIT) that allows link layer access to the
network. Programmers at Columbia have developed a library of reliable access routines for the
NIT, and this was employed. As with the SGI implementation the keys were the ability to manip-
ulate the Ethernet destination address, and to read and write packets. Since there is no shared
memory facility on the Suns, all capabilities were embodied in a client library. The defects in the
implementation are serious. An interrupt handler could not be associated with incoming packets
as they can with the equivalent TCP/IP drivers. Consequently, the client library itself cannot pro-
vide queuing in parallel with the operations of the client, and the client must poll usingnet_read()
at the rate of incoming messages or lose the messages. The implementation is therefore of little
practical use.

6. DISTRIBUTED INTERACTIVE SIMULATION (DIS)

6.1. General Description

DIS is a newer simulation standard than SIMNET. Many aspects of it are currently under develop-
ment and refinement. DIS shares its goals and purposes with SIMNET, but is far more ambitious,
allowing for greater complexity and realism. Examples: SIMNET uses a flat terrain; DIS accounts
for the curvature of the Earth. SIMNET is oriented towards terrain and the sky above it; the DIS
world encompasses all areas of potential military activity--earth, atmosphere, above and below
the surface of the ocean, and space.

6.2. DIS Protocol Data Units (PDUs)

DIS defines its own set of PDUs, of which a number have SIMNET counterparts.

PDU (official) Purpose
Entity State - Update vehicle state, i.e. location, appearance, operational status
Fire - Report firing of weapon
Detonation - Report impact or detonation of munition
Collision - Report collision of entity with another object

6. DISTRIBUTED INTERACTIVE SIMULATION (DIS) (8/21/95) 9

Service Request - Request transfer of supplies
Resupply Offer - Offer supplies to another entity
Resupply Received - Acknowledge receipt of some or all of offered supplies
Resupply Cancel - Cancel resupply service
Repair Complete - Report completion of repair
Repair Response - Acknowledge completion of repair

6.3. The Entity State PDU

To give a flavor of what a PDU contains, following is the Entity State PDU v2.0 and its fields (in
C syntax) [IST Oct91]. Many of the fields are themselves structures, but the contents of these are
not shown.

typedef struct {
PDUHeader entity_state_header;
EntityID entity_id;
ForceID force_id;
unsigned char num_articulat_params;
EntityType entity_type;
EntityType alt_entity_type;
VelocityVector entity_velocity;
EntityLocation entity_location;
EntityOrientation entity_orientation;
unsigned int entity_appearance;
DeadReckonParams dead_reckon_params;
EntityMarking entity_marking;
unsigned int capabilities;
ArticulatParams articulat_params[MAX_ARTICULAT_PARAMS];

} EntityStatePDU;

6.4. Tools

Unlike SIMNET, DIS does not require any non-standard network coding for Ethernet. PDUs are
broadcast (UDP/IP) onto the LAN. Reflecting on the experience of the SIMNET implementation,
it was decided to make a UNIX-portable DIS network library [LOCKE Oct92]. Sun and SGI both
fully support the BSD interface to networking facilities, so the package only has to account for a
few minor compilation differences between the two systems. As with the SIMNET implementa-
tion, a simple interface employing calls likenet_read()and net_write() is used. PDUs are written
immediately; incoming packets trigger an interrupt handler which maintains a queue of PDUs. A
call tonet_read() returns the oldest valid PDU on the queue.

After experience with a UNIX-portable DIS network library, we decided to eliminate linked lists
to prevent memory allocation contention. The new architecture of the library has two circular
PDU buffers. New PDUS from the net fill one buffer;net_read() consumes PDUs from the other.
When net_read() has exhausted its buffer, and under other circumstances, the buffers are
swapped.

7. THE DEFENSE SIMULATION INTERNET (DSI) (8/21/95) 10

6.5. The Semiannual DIS Workshop

Twice yearly (March and September), the weighty issues of DIS development, from what data
should go into a PDU to whether it can ever work, are discussed in Orlando, Florida. Attendees
include about three hundred individuals from government, industry, and academia. Anyone want-
ing to know more about DIS or would like to help guide its development are encouraged to attend.
Representatives from the Computer Science Department often attend and have presented a num-
ber of papers.

7. THE DEFENSE SIMULATION INTERNET (DSI)

BBN, under DARPA funding, has been rapidly building a dedicated nationwide simulation net-
work called the DSI. NPS is one of approximately a hundred sites currently on-line, although the
number is steadily rising. It runs TCP/IP traffic but is not considered part ofthe Internet. It works
in a slightly different way. Use of the DSI is governed by the Network Operations Center (NOC)
at BBN in Cambridge. Parties desiring to run a simulation schedule bandwidth on the network;
they then have exclusive use of the bandwidth for the period scheduled. This avoids the network
saturation that would result from multiple simultaneous simulations.

The DSI Backbone and Selected Simulation Sites (as of 4 Jun 93)

The mechanics are as follows. DSI sites have a BBN T/20 gateway attached to a local Ethernet
cable. Hosts on the Ethernet broadcast PDUs. The T/20 reads the packets and multicasts them on
the DSI where they will be received by all other gateways, particularly those involved in the sim-
ulation.

WPS

Simulation

Backbone circuit

Tail circuit

AFIT

NPS

SRI

LA

Scott

DC

NY

BBN

Kirtland AFB Gunter

Norfolk

8. Performance Issues (8/21/95) 11

8. Performance Issues

The viability of the DIS plan for large-scale simulations is a key controversy. The long-term goal
is to conduct simulations with up to 10,000 entities. This raises serious questions. Will network
bandwidth be able to handle the volume of traffic representing all the events that must be shared
among hosts? Will processors be able to keep up with the demands of the simulation, which
includes dead reckoning every mobile entity in addition to graphics generation and all other pro-
cessing? Where will the bottleneck be?

We must also remember that actual DoD simulations may be classified since they reveal informa-
tion about vehicle capabilities and tactical planning. These simulations must be run on secure net-
works. PDUs must be encrypted on the sending end and then decrypted at the receiving end. This
is another potentially debilitating bottleneck (although not one that will affect our unclassified
research in the Computer Science Department).

But DIS is a long-term project. Its ultimate success will depend on dramatic progress being made
in the performance of processors and networks.

9. REFERENCES (8/21/95) 12

9. REFERENCES

SECHREST, STUART [August 1986],An Introductory 4.3BSD Interprocess Communication
Tutorial, UNIX Programmer’s Supplementary Documents, Volume 1 (PS1:7)

LEFFLER, SAMUEL J., et al. [August 1986],An Advanced 4.3BSD Interprocess Communica-
tion Tutorial, UNIX Programmer’s Supplementary Documents, Volume 1 (PS1:8)

COMER, DOUGLAS E. [1988],Internetworking With TCP/IP - Principles, Protocols, and
Architecture, Prentice-Hall, Englewood Cliffs, New Jersey

LEFFLER, SAMUEL J., et al. [1989],The Design and Implementation of the 4.3BSD UNIX
Operating System, Addison-Wesley, Reading, Massachusetts

STEVENS, W. RICHARD [1990],UNIX Network Programming, Prentice-Hall, Englewood
Cliffs, New Jersey

POPE, ARTHUR R. and SCHAFFER, RICHARD L. [June 1991],The SIMNET Network and
Protocols, BBN Systems and Technologies Corporation Report No. 7627

IST [October 1991],Military Standard: Protocol Data Units for Entity Information and Entity
Interaction in a Distributed Interactive Simulation, Institute for Simulation and Training,
Orlando, Florida

IST [January 1992],Rationale Document: Entity Information and Entity Interaction in a Dis-
tributed Interactive Simulation, Institute for Simulation and Training, Orlando, Florida

IST [February 1992],Standards Development Guidance Document, Institute for Simulation and
Training, Orlando, Florida

IST [February 1992],Distributed Interactive Simulation Operational Concept, Institute for Sim-
ulation and Training, Orlando, Florida

ZYDA, MICHAEL J., PRATT, DAVID R., MONAHAN, JAMES G. and WILSON, KALIN P.
[February 1992],NPSNET: Constructing A 3D Virtual World, paper in Proceedings of the 1992
Symposium on Interactive 3D Graphics

LOCKE, JOHN, PRATT, DAVID R. and ZYDA, MICHAEL J. [March 1992],Integrating SIM-
NET with NPSNET Using a Mix of Silicon Graphics and Sun Workstations, paper presented to
The Sixth Workshop on Standards for the Interoperability of Defense Simulations

NEVIN, BRUCE [May 1992],T/20 Internet Packet Router (IPR) Operations Guide, BBN Com-
munications Operations Series

LOCKE, JOHN, PRATT, DAVID R. and ZYDA, MICHAEL J. [September 1992],A DIS Net-
work Library for UNIX and NPSNET, paper presented to The Seventh Workshop on Standards
for the Interoperability of Defense Simulations

WETZEL, REBECCA, et al. [October 1992],The Defense Simulation Internet: User’s Guide,
BBN Systems and Technologies Corporation Report No. 7765

IST [various], Summary Reports of the Workshops for the Interoperability of Defense Simula-
tions, Institute for Simulation and Training, Orlando, Florida

